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C
ontrolling ion flow through
nanochannels has a broad range of
possible applications in various

fields. One of the most attractive ways to re-
alize such control is via electrostatic interac-
tions. If at least one dimension of a nanoflu-
idic channel (height or width) is comparable
to the Debye length, then the surface elec-
tric potential can greatly influence the con-
centrations and type of ions in the
nanochannel. It is the surface potential
that provides an opportunity to influence
the ionic flux through the channel. There
are two ways to alter the surface potential.
In the first approach, the intrinsic surface
charge is defined by the properties of the
surface groups. This is “passive” control of
the electric potential since it is only affected
by the pH and ionic concentration of the
bulk solution and can be altered by chang-
ing the density/chemical composition of
the groups on the channel’s walls. When a
nanochannel is covered by a conductive
layer, an “active” way of surface potential
control can be achieved. This conductive
layer can be electrically addressed; there-
fore, a potential difference between the
electrolyte solution and the nanochannel
walls can be applied, rendering the surface
positively or negatively charged.

Both these approaches of altering the
surface potential in a nanochannel have
been applied for constructing nanofluidic
analogues of semiconductor devices. Ionic
filters that allow selective transport of either
cations or anions were one of the first re-
ported ion controlling systems.1,2

More complex ionic devices can be
achieved by introducing an uneven distri-
bution of the surface potential in the chan-
nel. An immediate consequence of this bro-
ken symmetry is the formation of an ionic
rectifier. This asymmetry can be achieved

through either nanochannel shape or
charge, or a combination of both. Asym-
metrical nanopore geometry, for example,
with conically shaped pores,3 shows ionic
current rectification. Asymmetrical surface
charge distributions4–6 can form a junction
similar to the p�n semiconductor junction
(i.e., a nanofluidic diode). This kind of junc-
tion was originally realized in bipolar
membranes,7–10 but recently received re-
newed interest through its realization in
single nanochannels. These nanofluidic di-
odes, similar to their semiconductor coun-
terparts, allow the flow of ionic current in
one direction, blocking the flow of ions in
the other.4,5,11,12 Controlling the current
and the ion flux in both directions can also
be realized in nanofluidic transistors such as
bipolar11–13 or field-effect nanofluidic
transistors.14–16

The majority of nanofluidic nonlinear de-
vices have been realized using long
nanochannels with large aspect ratios. Re-
cent improvements in nanofabrication
techniques offer manufacturing precision
down to 1 nm and could allow the construc-
tion of low aspect ratio single
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ABSTRACT Recently reported experimental and theoretical studies of nanofluidic nonlinear devices, such as

bipolar and unipolar ionic diodes, have yet to answer the question about the possibility of their further

miniaturization. In this Article, we theoretically investigate the effects of size reduction, applied bias, and solution

ionic strength in such devices. We compare the numerical solutions of the Poisson, Nernst�Planck (PNP), and

Navier�Stokes (NS) equations with their one-dimensional, analytical approximations. We demonstrate that the

contribution of electroosmosis is insignificant and find analytical approximations to PNP for bipolar and unipolar

diodes that are in good agreement with numerical 3D solutions. We identify the minimal dimensions for such

diodes that demonstrate ion current rectification behavior and demonstrate the importance of the edge effect in

very short diodes.
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unipolar devices · Poisson�Nernst�Planck equations
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nanochannels and their arrays.17–20 Longitudinal
shrinkage is an attractive approach to further miniatur-
ize such nanofluidic analogues of semiconductor de-
vices, and we wish to explore the physical limitations
of such size reduction. The Leburton group at the Uni-
versity of Illinois at UrbanaOChampaign theoretically
analyzed the double-conical geometry for short
nanochannels,21–23 which has been experimentally re-
alized by electron beam drilling in silicon-based
materials.20–25 Chen et al.25 experimentally observed
ion current rectification in nanopores with a diameter
of �15 nm and a length of �40 nm that were prepared
by ion milling. The rectification was pH-dependent
and quite large, but it disappeared after uniform sur-
face modification by Al2O3, performed using the atomic
layer deposition technique. The Al2O3 treatment elimi-
nated the uneven charge (and perhaps shape as well)
distribution brought about by the ion milling fabrica-
tion process. There have been no reports so far that ex-
perimentally verified rectification behavior of nano-
pores of just a few nanometers in length. Here we
present our analysis of unipolar and bipolar diodes
built on the basis of cylindrical nanopores.

Most recent experimental data are available for syn-
thetic nanopore ionic diodes with large aspect ratios
over 103,4,5 but diodes based on protein channels that
have much smaller aspect ratios of �5 have been con-
structed as well.26,27 The artificial devices appear to
have superior rectification properties, at least as judged
by the ratio of currents recorded for opposite voltages
of the same magnitude. It is important for the further
development of ionic devices to clarify whether this dif-
ference is defined solely by the length of the pore.

The majority of publications dealing with nanoflu-
idic diodes rely only on numerical calculations, whereas
much less attention is paid to utilizing analytical mod-
els. Following our previous analysis of conductance
through uniformly charged nanopores,34 here we com-
pare full numerical solutions with analytical approxima-
tions for nanofluidic ionic diodes. We present deriva-
tion of 1D analytical approximations for two types of
ionic diodes built on single nanochannels with nonuni-
formly charged walls: (i) bipolar diodes consisting of a

junction between positively and negatively
charged parts, and (ii) unipolar diodes con-
taining a charged zone in contact with a neu-
tral part. Theoretical treatments of the
nanofluidic diodes as well as the equations
derived in this Article have a striking similar-
ity to the corresponding solid-state devices.
We show similarities of an ionic bipolar diode
to a p–n semiconductor junction and simi-
larities of a unipolar ionic diode to a Schot-
tky solid-state diode.

Description of Ion Current through Nanofluidic
Diodes. Each nanofluidic device under consid-
eration is based on a single nanochannel

with length L and radius a, as shown in Figure 1. The

nanochannel has a surface charge varying along the

channel’s z-axis, �(z), for which we neglect the possibil-

ity of depending on electrolyte and nanochannel ra-

dius (i.e., no surface charge regulation).28,29 The

nanochannel is connected to reservoirs with identical

bulk concentrations of KCl � Cbulk.

The Poisson�Nernst�Planck (PNP) equations

coupled with the Navier�Stokes (NS) equation de-

scribe such systems and are written as

{ ε0ε∆�) e(C+- C-)

Ji )-Di(∇ Ci +
zieCi

kBT
∇ �)

∇ · (Ciu + Ji) ) 0

∇ · u ) 0

u ∇ u ) 1
F

[- ∇ p + ν∇ 2u - (C+- C-) ∇ �] ) 0

(1)

In the Poisson equation, �0 is the permittivity of

vacuum, dielectric constant � � 80, e is the electron

charge, C� and C� are the ionic number densities (con-

centrations) of positive (K�) and negative (Cl�) ions, re-

spectively, and � is the electrical potential. The

Nernst�Planck (NP) equation describes the flux Ji, of

an ion i with charge zi, due to a concentration gradient

and the drift in the potential gradient, both of which are

proportional to the ions’ diffusion coefficient. The diffu-

sion coefficients, Di, are presumed to be identical and

equal, 2 � 10�9 m2/s for both ions. The mobilities of the

ions are then calculated as 	l � eDi/kBT, where kB is

the Boltzmann constant. The continuity condition (the

third equation) links the solution velocity vector, u, with

the ionic flux. The solution is presumed to be incom-

pressible (the fourth equation). The Navier�Stokes (NS)

equation completes the set but is often omitted with

the assumption of no movement for the solution, u �

0, when no external pressure, p, is applied. Since ap-

pearance of nonzero u under electric field and with no

pressure applied is called electroosmosis, exclusion of

NS is usually referred to as an omission of

electroosmosis.

Figure 1. Schematic of a nanofluidic diode. A nanochannel of radius a and length
L is connected to two reservoirs characterized by the bulk concentration of KCl �
Cbulk. The left reservoir is grounded, whereas the right reservoir is under potential
� V. Bipolar diode (BP): from z � 0 to z0 �(z) � ��, while from z � z0 to z � L � �(z)
� �. Unipolar diode (UP): from z � 0 to z0 �(z) � ��, while from z � z0 to z � L
� �(z) � 0. For � > 0, the potential V < 0 corresponds to the open (forward) state
of the diodes and V > 0 to the closed (reverse) state. For the majority of consider-
ations z0 � L/2.
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Boundary conditions finalize the problem descrip-
tion. The electrical potential on the farthest borders in
the left and right reservoirs were set to 0 and V, respec-
tively, as shown in Figure 1. The boundary condition:
d�/dr|r�a � �/εε0 was applied at the walls. For the
Navier�Stokes equation, the solution velocity at the
walls was set to zero, u(a) � 0, and the density and vis-
cosity of pure water, 
 � 1000 kg/m3 and � � 1 mPa · s,
were used.

As we will show below, the contribution of electro-
osmosis is small compared to the diffusive compo-
nents. Neglecting NS (u � 0) significantly simplifies the
equation set (eq 1) to what is abbreviated as the PNP
approximation:

{ ε0ε∆�) e(C+- C-)

∇ · (∇ Ci +
zieCi

kBT
∇ �)) 0

(2)

with zero bias applied, PNP (eq 2) reduces further to
the Poisson�Boltzmann (PB) equation:

∆� ' ) k2sinh �' (3)

where �= � e�/kBT is the dimensionless electric poten-
tial and k � [2e2Cbulk/�0�kBT]1/2 is the inverse Debye
length. Both the PNP and PB equations are mean-field
approximations, and their application in very narrow
channels is difficult to justify. However, for the
nanochannel dimensions used in this study (a 
 1
nm), it was demonstrated that the mean-field PNP ap-
proach shows the same results as obtained by Brown-
ian dynamics simulations.30,31

Both the PNP and PB equations can be routinely
solved numerically for an arbitrary shape of a
nanochannel and charge distribution. However, the ex-
act analytical solution of the PB equation is not even
known for the cylindrical geometry. If the electric po-
tential is small, eq 3 may be linearized to ��= � k2�=,
which is known as the Debye�Huckel (DH) approxima-
tion. Knowing the electric potential distribution at zero
bias, the corresponding ionic concentrations are calcu-
lated as C� � Cbulk exp[��=]. The analytical solution of
the DH equation for a cylinder has been known for
years,32 but it greatly overestimates the potential for
small values of ka, introducing a substantial error. Re-
cently, Petsev and Lopez (PL) derived an approximate
solution33 for the PB equation in a cylindrical nanochan-
nel, which agrees better with the numerical solutions,
especially for ka � 4.

Because of PNPs’ complexity in a three-dimensional
(3D) formulation, we will seek 1D analytical approxima-
tions. In the 1D description of the problem, there is al-
ways a concentration difference between the majority
carriers (C
(z) � counterions) � the ions of the oppo-
site charge to that of the walls, and the minority carri-
ers (C�(z) � co-ions). These concentrations are aver-

aged over the channel cross section and thus are

functions of z only. Because of the electroneutrality con-

dition, the concentration difference can be calculated

as �C(z) � C
(z) � C�(z) � 2|�(z)|/ea. The concentra-

tions at zero bias can then be written as

{ C>
′ ) 0.5(∆C ' + CD

′ )

C<
′ ) 0.5(-∆C ' + CD

′ )

CD
′ ) √∆C′2 + 4

(4)

where the prime refers to dimensionless concentra-

tions, that is, normalized by Cbulk. The Donnan concen-

tration, CD, represents the total ionic concentration in-

side the nanochannel, CD � C
 � C�.

An abrupt change in the surface charge results in a

similarly abrupt change in the electric potential:

�right -�left )-ln(C+
right

C+
left )) ln(C-

right

C-
left ) (5)

At the nanopore entrances, eq 5 can be written as

the well-known Donnan potential drop, �=D � ln (C

= )

� sinh�1(�C=/2). To avoid confusion, we will use �D

with its actual sign; that is, it will be ��D inside a chan-

nel with negatively charged walls.

Linear combinations of ionic fluxes are often more

convenient to deal with than individual fluxes. The

PNP equation in the 1D approach is then written as

{ J'++ J'-)R)-dC'
dz

-∆C '
d�'
dz

J'+- J'-)-J ' ) d∆C'
dz

- C '
d�'
dz

(6)

where the fluxes Ji are normalized by the diffusion coef-

ficient, Ji= � Ji/D. The total ionic current then equals I

� e�a2DJ=Cbulk.

It is useful to define the ionic selectivity in a similar

manner to that used for uniformly charged nanochan-

nels:34

S )
I+- I-
I++ I-

) |RJ' | (7)

The selectivity is constant throughout the channel

and defines a preference for particular ions to be trans-

ported. The total exclusion of one type of ion corre-

sponds to S � 1, which describes a perfectly selective

channel, while S � 0 describes a nonselective channel.

Channels with nonuniform surface charge distribu-

tions can demonstrate a significantly different current

depending on the bias sign, that is, representing the

ionic diodes. In order to describe such ionic diodes, we

will use a similar analysis as the one shown in ref 34,

that is, 3D numerical solution of PNP and analytical

pseudo-1D approximations. Two extreme cases of ex-
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perimentally realizable nanofluidic diodes will be inves-
tigated: bipolar diodes and unipolar diodes. A bipolar
(BP) diode has two segments in the nanochannel with
surface charges of the opposite sign and the same
charge density: �� from 0 to z0, and ��, from z0 to L
(Figure 1). With no bias applied, the part of the pore
with negative surface charges is cation selective, while
in the other part (with positive surface charges), anions
are the majority carriers. A unipolar (UP) diode is simi-
larly formed with one part of the channel charged (ei-
ther positively or negatively) and the other part neutral.
We will consider a UP diode with negative surface
charge density, �� from 0 to z0, and neutral in the re-
maining portion, from z0 to L. Thus, the negative bias on
the right-hand side will be the forward bias (or an “open
state” of the diode), while the positive bias on the right-
hand side should correspond to the reverse bias (or the
“closed state”). The parameter z0 indicates the position
of the transition zone, where the surface charge drasti-

cally changes. We will typically locate it at
the center, z0 � L/2. Intermediate situations,
where the charge densities in the two zones
of the pore are dissimilar in a different man-
ner and/or the channel diameter changes
along z, will also constitute a nanofluidic di-
ode, but these systems will not be consid-
ered here.

RESULTS AND DISCUSSIONS
Figure 2 compares the ionic concentra-

tions and electric potential profiles for BP
and UP diodes for forward and reverse bi-
ases. The profiles were calculated by numeri-
cally solving the PNP equations (eq 2). As ex-
pected, the forward bias causes an
enhancement of K� and Cl� concentrations
inside the pore, especially in the transition
zone (Figure 2A,D), while the reverse bias
produces very low ionic concentrations near
z � z0, effectively leading to the formation of
a depletion zone (Figure 2B,E). At the re-
verse bias, almost the whole voltage drop oc-
curs at the depletion zone (Figure 2C,F). The
effect is more pronounced for a BP diode,
which makes it a better diode.

The quality of an ionic diodes’ perfor-
mance can be described by the rectification
factor, Q, calculated as the ratio of currents
measured at opposite voltages of the same
magnitude:

Q )
Iopen(V)

Iclosed(-V)
(8)

Higher values of Q(V) correspond to bet-
ter diode characteristics. The rectification fac-

tor for BP and UP diodes depends on the

channel length, diameter, concentration of ions, and

the bias voltage (Figures 3–7). The numerical calcula-

tions are compared with simplified 1D analyses based

on eq 6, which we show separately for each type of

diode.

Bipolar (BP) Diode. Because of the device symmetry,

the value of � � J=� � J=� (eq 6) for a BP diode

equals 0, and �C can be taken as a constant (but of

the opposite sign on each side of the diode). In the

1D approximation, the total concentration (i.e., the

sum C� � C� at z0 should be continuous, while the

potential should jump in accordance with eq 5. At

the edges, the potentials jump by ��D and ��D, re-

spectively, with respect to the potential in the reser-

voirs, while the concentrations inside the pore

should be equal to CD at the both edges. The open

state corresponds to the negative bias, �V, applied

at the right reservoir.

Figure 2. Profiles of the average ion concentrations and the electric potentials cal-
culated for bipolar, BP (A�C), and unipolar, UP (D�F) diodes that were based on a
1 �m long nanochannel with a � 4 nm radius and � � 0.5e/nm2. The bulk KCl con-
centration is Cbulk � 0.1M. (A and D) Open-state (forward bias) concentrations of
K� and Cl�. (B and E) Concentration profiles of K� and Cl� ions in the closed state
(reverse bias). (C and F) Electric potential profiles for two biases.
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Substitution of d�=/dz � (1/�C=)dC=/dz from eq 6
(top) allows integration of eq 6 (bottom) to obtain J=L
� (C=0

2 � C=D
2), where C0 is the concentration in the

middle. The variation of the potential can be found by
integrating eq 6 (e.g., �L

= � ��D
= � (C0 � CD

= )/�C=) on the
left-hand side. A similar integration on the right-hand
side, in combination with the boundary conditions
mentioned above, produces the following transcenden-
tal expression for the voltage�current (V�I) depen-
dence:

V ) 2
∆C'

(√CD
′2 +∆C′LJ' - CD

′ ) + 2 ln
(∆C ' + CD

′ )

2
+

ln
√CD

′2 +∆C′LJ' -∆C'

√CD
′2 +∆C′LJ' +∆C'

+ J '
πa
4

(9)

As the last term, we have also included the so-
called Hall resistance, which is the access resistance at
the channel edges for a neutral channel. This term can
be neglected for long diodes but becomes important
for short diodes and high biases. Since � � 0 in the BP
diode, assignment of the entrance resistance by Hall re-
sistance should work well at least with neutral reser-
voir walls. The PNP calculations presented in Figure 3B
appear to be in good agreement with eq 9 for the open
state in long diodes.

In the limit of small bias (V �� kBT/e) in long di-

odes, eq 9 produces a linear I�V dependence, but with

the current only a quarter of the value found for a uni-

formly charged nanochannel:

Iopen
BP ≈ e2πa2CD

D
4kBT

V
L

(10)

In the opposite limit, the square root of the current is a

linear function of the bias

Iopen
BP ≈ ( ea

2kBT)2eπD∆C
L

(V + V0)2 (11)

where the intercept, V0 � 2kBT/e (CD/�C � ln((CD �

�C)/2Cbulk)), changes sign from positive to negative at

�C/Cbulk � 3. Formulas similar to eq 11 were obtained

for BP membranes35 and more recently for single chan-

nels,11 but the value of V0 was different. Figures 3and

4 clearly show that eq 9 agrees very well with the nu-

merical PNP calculations for long diodes. Expression 9

is applicable for the reverse bias as well; one simply has

to change the signs for the current and the bias. In the

limit of small V, it reduces to the same (eq 10). High re-

verse bias, according to eq 12, produces current in the

closed state that is independent of V:

Iclosed
BP ) 4eπD

a2Cbulk
2

∆CL
) 2e2πD

a3Cbulk
2

σL
(12)

Figure 3. Transport properties of ionic diodes as a function
of the nanochannel length. Numerical calculations (PNP) for
UP (black) and BP (red) diodes with a � 4 nm, z0 � L/2, |�| �
0.5 e/nm2, 1 V bias, and Cbulk � 0.1 M are compared with
1D approximations. (A) The current at reverse bias and its
1D approximations using: dashed red line (eq 12a) for L >
ldep � 6 nm combined with eq 29 for L < 6 nm; solid red line
(eq 12a) scaled by a factor 1.6 (to match the PL approxima-
tion) for L > 6 nm combined with eq 29 for L < 6 nm; solid
black line (eq 27a); dashed black line (eq 27) with Cdep from
eq 24) and ldep from eq 23) for L > 100 nm; shorter lengths (L
< 30 nm) are described by eq 29. (B) Current for forward
bias and its 1D approximations using: solid red line (eq 9);
solid black line (eq 17). (C) Rectification factor and its ap-
proximation calculated using the above formulas. See text
for details.

Figure 4. Transport properties of ionic diodes as a function
of the nanochannel radius calculated for L � 1 �m, |�| � 0.5
e/nm2, z0 � L/2, 1 V bias, and Cbulk � 0.1 M. Numerical (PNP)
calculations for UP (black) and BP (red) diodes are com-
pared with 1D approximations. (A) Current at reverse bias;
solid red line, 1D estimate using eq 12; solid black line (eq
27a); dashed black line (eq 27) with Cdep from eq 24. (B) Cur-
rent at forward bias: solid red line (eq 9); black solid line
(eq 19). (C) Rectification factor and its approximation calcu-
lated using the above formulas. See text for details.
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From graphical analysis, the transition from eq 10
to eq 12 occurs at a bias of V � 3kBT/e. The current in
the closed state in BP diodes is reasonably well ex-
plained by eq 12: both the characteristic cubic depen-
dence on the pore radius (Figure 4) and quadratic de-
pendence on the bulk ion concentration (Figure 5) are
clearly visible. The absolute value of the current in the
closed state is, however, underestimated by eq 12 by
approximately a factor of 2 (see Figure 5). The poorer
accuracy of the closed-state description is due to the
shortcomings of the 1D Donnan equilibrium treatment
in predicting the minority carrier concentration in nano-
pores. The PL approximation of PB does a better job
and is only 20% below that of numerically obtained PNP
values.

Minority carriers are responsible for the current in
the closed state, which is clear from the alternative deri-
vation of eq 12, similar to that used in semiconductor
p�n junction diodes. The electric field under reverse
bias is very small everywhere except for the depletion
zone. In long diodes, the depletion zone is so short that
it can be neglected and thus one can assume that the
electric field, d�/dz, is zero everywhere. At the same
time, the ionic concentrations are low, especially near
the depletion zone, which suggests that the contribu-
tion of ion drift in the field to the total flux is negligible.
The fluxes of each ion should not depend on z; there-

fore, one can calculate their values at any z, for ex-
ample, at the portion where each ion becomes a minor-
ity carrier. The assumption that d�/dz � 0 suggests
that the K� concentration drops linearly from the equi-
librium concentration C�(L) at the right pore entrance
(z � L) to zero at z � z0. This implies that the concentra-
tion of potassium ions is given by C�(z) � C�(L) (z �

z0)/(L � z0) for z0 � z � L (Figure 2B), while the concen-
tration of chloride changes as C�(z) � C�(0) (z0 � z)/z0

for 0 � z � z0. Both C�(L) and C�(0) are the same and
equal C� as given by eq 4. The total ionic current at a re-
verse bias for a BP diode can be then estimated as:

Iclosed
BP ) eDπa2[(dC+

dz )
right

- (dC-

dz )
left

]
) eDπa2C<

L
z0(L - z0)

(13)

which reduces to eq 12 after substituting C� from eq 4
in the limit of high surface charge densities, and z0 �

L/2. Note that the reverse current has a minimum value
for z0 � L/2; that is, an (anti)symmetric BP diode would
have the minimal reverse current (see details in Sup-
porting Information).

The quadratic voltage dependence of the current in
the open state from eq 11 cannot last long; it becomes
linear due to the substantial voltage drop at the diode
entrances when the voltage drop across the diode
channel reaches the value of the voltage drop across
the Hall resistance, that is, at the critical bias:

Vc
BP ∼

8LCbulk

π
kBT

σ
(14)

This critical bias is similar to the value found for a ho-
mogeneously charged nanochannel of the same sur-
face charge density and length.34 For a diode with � �

0.5e/nm2, the condition of eq 14 at 1 V is realized for
quite long diodes, L � 200 nm; a departure from the
quadratic dependence of the open-state current on
voltage appears noticeable even at lower voltages. One
can reveal Vc

BP by monitoring the diode current at a
constant bias for channels of different values of L or by
changing the ion concentration. Figures 3 and 4 illus-
trate an exceptionally good agreement between the
numerical PNP calculations and the corresponding 1D
modeling using eq 9 for long diodes. A departure from
the simple dependence given by eq 11 is clearly visible
even for 1 	m long diodes in Cbulk � 0.1 M.

The current in the closed state of a BP diode is also
sensitive to its length, but the physics of this depen-
dence is different. Figure 3 illustrates that the simple
1/L dependence in eq 12 is observed down to chan-
nels as short as 10 nm, at least for 1 V bias. The reason
for the departure from this simple behavior is not the
access resistance, but rather the width of the depletion
zone, ldep, becoming comparable to the overall device

Figure 5. Transport properties of ionic diodes as a function
of the ionic concentration, Cbulk, calculated numerically
(PNP) for L � 1 �m, |�| � 0.5 e/nm2, z0 � L/2, 1 V bias, and
a � 4 nm. Numerical (3D PNP) calculations for UP (black) and
BP (red) diodes are compared with 1D approximations. (A)
Current at reverse bias and its 1D approximations using:
solid red line (eq 12); solid black line (eq 27), with Cdep from
eq 25; dashed black line (eq 27), with Cdep from eq 24. (B)
Current at forward bias; solid red line (eq 9) and dashed red
line (eq 11); solid black line (eq 19). (C) Rectification factor
and its approximation calculated using the above formulas.
See text for details.
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length L. The depletion zone forms between the two
oppositely charged segments of the pore. It can appear
as a transition zone during construction of the diode,
but even in a perfectly abrupt transition, it widens upon
increasing the reverse bias. In order to explain this ef-
fect, one has to repeal the simplification of the Laplace
equation that we have employed in our 1D description
and consider the Poisson equation, d2�=/dz2 � �k2�C=
in the vicinity of the separation zone. This analysis is
analogous to the approach used for the semiconduc-
tor PN junction.36 In a simple approximation, one can
assume �C to be constant with opposite signs on the
two sides of the depletion zone. The resulting poten-
tial changes quadratically with the distance in both di-
rections away from the center and reaches the limiting
values within ldep/2 on each side, where

ldep ≈ 2� V'

k2∆C'
)�2Vεε0

e∆C
)�Vaεε0

σ
(15)

Note that the width of the depletion zone appears
independent of the diode’s length and the bulk ion con-
centration but increases with the pore radius and bias.
The width becomes comparable to the pore diameter at
relatively low biases: for example, at 1 V, ldep � 6 nm
for a � 4 nm and � � 0.5e/nm2. The diode “opens up”
at the reverse bias when the depletion zone extends to
the full length of the diode, at which point, the diode’s
performance can be approximated as a neutral pore
(see eq 23 in ref 34). We would like to emphasize that
the diode opening up effect shown here has a very dif-
ferent physical basis than the dramatic increase of the
reverse currents shown for bipolar membranes,8,9

where it occurred due to presumed dissociation of
water.

The current for short diodes but with L 
 ldep is
also affected by the depletion zone length. One can ac-
commodate this fact by recalling how eq 13 was de-
rived. The region where the potential gradient is zero
now extends over L � ldep, rather than over the whole
L, thus the current can be rescaled as

Iclosed
BP ) 2e2πD

a3Cbulk
2

σ(L - ldep)
(12a)

where ldep is given by eq 15. Obviously, the contribu-
tion of ldep becomes undistinguishable when L in-
creases. Equation 12a indeed describes very well the
variation of the current in the closed state with chan-
nel lengths down to ldep, as Figure 3 illustrates. For
shorter diodes, the depletion zone extends over the
whole diode length, which resembles the situation of a
neutral channel, and consequently, the current can be
described by the equation derived for a neutral pore (eq
23 in ref 34). Given the simplicity of our description of
the depletion zone, the agreement between the 1D ap-

proximation and the numerical PNP calculations ap-
pears surprisingly good.

The rectification factor, Q, calculated from eq 8 us-
ing the above-described approximations of the cur-
rents for forward and reverse biases, also shows remark-
ably good agreement with the numerical PNP
predictions. Not only does it correctly capture the a�2

dependence of Q on the radius (Figure 4), and the
pseudo-1/Cbulk dependence on the electrolyte concen-
tration (Figure 5) but it also very nicely reproduces the
more complicated dependence on the diode length
(Figure 3).

Interestingly, the diode would demonstrate the
“closed” state and the corresponding rectifying behav-
ior even for short pores having lengths smaller than
their diameter, provided that the bias is not large. The
minimal length for which no current rectification occurs
can be estimated by substituting ldep � L in eq 12, and
the minimum voltage, V � kBT/e for which the satura-
tion of the reverse current can be still achieved in accor-
dance with eq 12. The resulting condition

Lmin )�kBT

e

aεε0

σ
(16)

defines the minimum length for a diode. Note that the
aspect ratio, a/L, does not represent a good scaling pa-
rameter; more appropriate is the ratio a/L2. Equation 16
also suggests that some ion current rectification can
be observed even for L as short as 2 nm when a diode
is based on a nanopore with a � 4 nm and � � 0.5e/
nm2, and the bias does not exceed �0.1 V. As it was al-
ready pointed out above, this critical diode length is in-
dependent of the bulk ion concentration and is optimal
(i.e., resulting in the highest Q) for an antisymmetric
configuration, that is, when the lengths of positively
and negatively charged segments are identical. Figure
6compares the I�V curves that were calculated numeri-
cally (3D PNP) with the 1D approximation curve ob-
tained from eq 9. The correspondence between the nu-
merical and the analytical solutions is very good.

Current�voltage (I�V) dependences for very short
BP diodes are shown in Figure 7A. Diodes with very
low aspect ratios (e.g., with L � 2 nm and a � 4 nm)
show almost no rectification. The resistance in this case
approaches the Hall resistance. Longer devices, how-
ever, have the characteristic low currents under reverse
bias, which disappear at higher voltages. As eq 15
states, longer diodes require higher biases for opening
up.

When nanofluidic diodes are short, the reservoir
walls that are in contact with the pore entrances play a
significant role in determination of transport properties
of the devices. Similar to the charged nanochannel
case,34 ionic currents for nanofluidic diodes are higher
for the open state and lower for the closed state when
the reservoir walls have the same charge density as the
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corresponding side of the nanochannel (see Fig-
ure 7B). Thus charging the reservoir walls signifi-
cantly improves the devices’ performance. It is the
effective “preconditioning” of the concentrations
at the nanochannel edges in this case that re-
duces the entrance resistance and the polariza-
tion effects. As Figure 7B illustrates, even ul-
trashort diodes of only 1 nm long demonstrate
remarkable rectification characteristics. Moreo-
ever, no breaking down (opening) is observed
at reverse biases up to 5 V, and the open-state
resistance is smaller than the Hall resistance.
For the parameters of Figure 7, the open-state
resistance is nearly three times smaller than
the Hall resistance, which indicates a signifi-
cant segregation of ions of opposite charges
near the edges. Obviously, our 1D approxima-
tion is not applicable for evaluation of such
very short diodes, for which a full 3D analysis
would have to be performed. The effect of
charged reservoir walls diminishes in long di-
odes, where the diode resistance becomes the
limiting factor (see details in Supporting Infor-
mation). In the ultrashort diodes, on the other
hand, the distribution of charges inside the
channel becomes unimportant as the diode’s
performance is dictated by the reservoir walls;
the I�V curves barely change if the nanochan-
nel surface is set to have zero charge (see Sup-
porting Information for details).

Summary of the Analysis of a Bipolar Diode (BP). A BP di-
ode has maximum rectification when the two oppo-
sitely charged segments have an equal length. Equa-
tion 9 gives a good quantitative description of the
I�V curve of a BP diode for all biases. At large reverse
biases, a BP diode shows current that is indepen-
dent of the bias, a property that is similar to the semi-
conductor PN junction. The value of the reverse cur-
rent is underestimated by ca. a factor of 2 in eqs 9, 12,
and 13, but better approximations for the minority
carrier concentrations (e.g., PL33) provide almost a
perfect quantitative agreement. Upon further in-
crease of the reverse bias, the depletion zone grows
in width (proportional to �V1/2) and can reach the
length of the diode, which has been taken into ac-
count via eq 15. The rectification factor is the high-
est for long diodes, when currents for both forward
and reverse biases decline linearly with length, �L�1,
and the diode resistance is dominant. The forward
and reverse currents have a1 and a3 dependences on
radii, respectively, making the rectification factor pro-

portional to a�2. Dependence on the bulk ionic con-

centration is quadratic, Cbulk
2 , for the open-state cur-

rent, and linear, Cbulk, for the closed-state current,

yielding the Cbulk
�1 dependence of the rectification fac-

tor. The rectification effect decreases strongly for

very short diodes containing neutral reservoir walls.

Figure 6. Current�voltage (I�V) dependences of a BP (A, B) and a UP (C, D) di-
odes with L � 1 �m, a � 4 nm, z0 � L/2, Cbulk � 0.1 M, and � � 0.5e/nm2. Points
(red and black) are calculated numerically using 3D PNP. (A) Open state of a BP di-
ode. Blue curve shows the results of eq 9. (B) Closed state. The calculated current
from eq 9 shows lower current values due to the underestimation of the minority
carrier concentrations by the Donnan approximation (the PL approximation gives
better quantitative agreement). (C) Open state of a UP diode. The red curve shows
the results of eq 19. (D) Closed state: for bias < 0.25 V, the depletion zone is not
formed and the current is described by eq 22; the situation with biases larger than
0.25 V is described by eq 27. Note different scales for open and closed states.

Figure 7. Current�voltage (I�V) dependences calculated numerically using 3D
PNP for diodes with a � 4 nm, � � 0.5e/nm2, Cbulk � 0.1 M, and various (small)
lengths. (A) BP diodes with neutral reservoir walls: even devices with low aspect
ratios show rectification at small biases. The longer the diode, the higher the bi-
ases at which the diode opens up. The minimum diode length that assures ion cur-
rent rectification can be estimated using eq 15. The resistance is always greater
than Hall resistance (dashed line). (B) BP diodes with the reservoir walls having the
same surface charge density as the corresponding sides of the channel. (C) UP di-
odes with neutral reservoir walls: Longer lengths are necessary to observe notice-
able rectification. Equation 30 allows the estimation of the minimal diode length.
(D) UP diodes with reservoir walls having the same surface charge density as the
corresponding sides of the channel.
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Noticeable rectification is, however, observed for even

very short diodes of aspect ratio equal to one or less when

the reservoirs are charged as well (eq 16).

Unipolar (UP) Diode. The case of the unipolar (UP) di-

ode is more complicated than that of the BP because

of the low symmetry of the device. The ion fluxes, J�

and J�, are no longer equal and the electroneutrality

condition that we employed for the 1D approximation

in PB is not fulfilled in many regions of UP diode. Strictly

speaking, in this case, one has to solve the Poisson

equation. Nevertheless, at forward bias, the current is

high enough and the selectivity is correspondingly low,

making the treatment using the Laplace equation

satisfactory.

Under this approximation, we can apply a treat-

ment similar to the approach used for the BP diode

(see details in Supporting Information). There are four

sections of the diode on which the applied potential

drops: the entrance into the charged section, the

charged segment, the neutral channel, and the intersec-

tion between the charged and neutral segments (with

��C). The sum of these potentials equals the applied

bias. We will presume that C(z0) � C0 is continuous and

calculate the corresponding jump in the potential ��C.

The value of � in eq 6 is no longer zero but equals

the negative gradient of the total concentration in the

neutral part (i.e., for z0 � L/2, it is � � 2(C0
= � 2)/L. The

concentrations and the potential drops on each section

can be expressed through C0. The latter can be found

by integrating eq 6:

C0
′ ) 1

3
(2 + √(4 + 3CD

′2 - 3∆C'JL)

The overall equation for the voltage�current depen-

dence becomes

V ' )-sinh(∆C′

2 )- ln( C0
′

C0
′ +∆C′)+ J′L

2(C0
′ - 2)

ln(C0
′

2 )+
1

∆C′(CD
′ - 2(C0

′ - 1)) + J '
πa
4

(17)

The first term of eq 17 is the Donnan potential, ��D,

the second is the potential jump ��C at z � z0, and the

third and the forth terms are potential drops on the

neutral, ��R, and the charged, ��L, segments, respec-

tively. The contribution from the entrance resistance is

also included as the Hall resistance in the last term.

By presuming that C(z0) 

 CD and neglecting �D, eq

17 in the limit of long diodes can be simplified to a tran-

scendental formula for the current:

J ' )-

3∆C'
4L

V ′2

[1 + 3
8

ln(∆C′|J′|L
3 )]2

(18)

Iteration Jn�1
= � F(Jn

= ) with the initial step (n � 0) J0
= �

� 3�C=/4LV=2 allows its further simplification:

Iopen
UP )-e

π2a2

2

3D∆C
4L ( eV

kBT)2

[1 + 3
4

ln(- ∆CeV
4kBTCbulk

)]2
(19)

representing the current as an explicit function of bias.
Note that the iteration beyond n � 0 results only in an
additional coefficient close to �/2 (shown in Supporting
Information). Neither eq 17 nor eq 19 provides a cor-
rect current behavior at small biases or at a reverse bias.
This is not surprising since in the closed state of this di-
ode we have to solve the Poisson equation. Neverthe-
less, as Figures 3 and 4 demonstrate, the value of for-
ward currents in long diodes at 1 V bias is explained
relatively well by eq 19. Both the pore radius depen-
dence (�1/a3/2) and the inverse dependence on the di-
ode length are well reproduced. Upon shortening the
diode length, the pseudo-quadratic dependence of the
current on voltage of eq 19 saturates. For short UP di-
odes, even with the Hall resistance included, eq 17 over-
estimates the current because of the additional concen-
tration drop at the charged nanochannel entrance,
which results in an extra voltage drop (polarization) at
that entrance (see eq 20 and Figure 6A of ref 34).

Although the dependence of IUP
open on Cbulk is weak

(supralinear) and hidden in eq 19, it is still reasonably
well reproduced at high concentrations (see Figure 5B).
For small ionic strengths (ka � 1), eq 19 fails because
of a significant discontinuity of C(z0) at the point where
the surface charge changes from � to 0 (Figure 5B).

Equation 19 describes the I�V curve for a UP diode
in the open state quite well (see Figure 7C). Slight over-
estimation of the current is due to neglecting �D and
not taking into account the concentration polarization
at the charged segment entrance. The case of the UP di-
ode under reverse bias will be considered separately
for low and moderate biases.

UP Diode under Low Reverse Bias. The ion selectivity of a BP
diode is zero because the device is fully symmetric. A
UP diode is not as symmetric, and S should be nonzero;
a nonselective UP diode (S � 0) would not rectify the
ion current. We presume that the charged segment at
a low bias behaves in a similar way to a homogeneously
charged nanochannel (i.e., the sum of all charges is
zero throughout). Again, one can identify four sections
of the diode on which the applied potential drops, and
they can be expressed through C0, the ion concentra-
tion at z � z0 � L/2:

-�D
′ +

2 - C0
′

∆C'
+ ln(2C>

′

C0
′ )+ 1

S
ln( 2

C0
′ )) V' (20)

The equation can be simplified by recognizing that
the potential drop across the charged part of the di-
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ode (the second term) is small (see Figure 2F) and thus

can be neglected if �C 

 Cbulk. Then C0 can be found,

which in a highly charged nanochannel with S � 1

C0
′ )� 4C>

′

exp(V ' +�D
′ )

(21)

This concentration, therefore, very quickly declines

with the bias and eventually a zone of low ion concen-

tration, that is, the depletion zone is formed (see Figure

2F). The ionic current can be calculated on the basis of

the charged segment, where the ion flow occurs prima-

rily due to electromigration (i.e., the ionic flux equals J=
� C=(d�=/dz) � 1/S(dC=/dz)). Thus, the current can be

calculated using C0 as

Iclosed_low
UP ) 2eπa2D

S

(2Cbulk - C0)

L
(22)

UP Diode under Moderate Reverse Bias. As seen from eq 21,

C0 decreases with the bias and eventually saturates at

a very small value, Cdep, for V 

 �D. The C0 decrease is

accompanied by a widening of the region with small

Cdep, which is referred to as the depletion zone, similar

to that in a BP diode. The difference between a UP di-

ode compared to a BP one is that the depletion zone is

now confined almost exclusively to the neutral seg-

ment and its width is significantly greater than in a BP

diode. As we mentioned above, the Laplace treatment

of the depletion zone is not sufficient, and one has to

solve the Poisson equation. The overall treatment of

this case is similar to the description of the Schottky di-

ode:37 the charged segment of the nanopore corre-

sponds to the metal part and the uncharged segment

to the semiconductor part. By presuming that the ionic

concentration inside the depletion zone is constant,

Cdep, (which also means the difference between the

concentrations of two ions, is constant �C � SCdep) one

can solve the Poisson equation, ��=(z) � �k2�C=, to

find the depletion zone width, ldep:

ldep )� 2V'

Sk2Cdep
′ (23)

The value of Cdep can be estimated by realizing

that the ion flux, which inside the depletion zone oc-

curs primarily due to the electromigration, is equal to

the flux through the uncharged segment, where the

ions diffuse due to the concentration gradient (the elec-

tric field there is close to zero). The resulting expres-

sion for balancing the flux in the two zones becomes

k2
SCdep

′2 ldep

2
) 1

S

2 - Cdep
′

L ⁄ 2 - ldep
(24)

After substituting ldep from eq 23, in the limit of L/2


 ldep, one obtains the concentration in the deple-
tion zone as

Cdep
′ ) 2

S( 4

k2V ' L2)1⁄3
(25)

This formula leads to the expression for the depletion
zone width

ldep ) (LV ′2

2k2 )1⁄3

(26)

which is in a good agreement with numerical calcula-
tions (see details in Supporting Information).

Note that ldep from eq 26 depends not only on the
bias but, in contrast to BP diode, also on L and the bulk
ion concentration, Cbulk. On the other hand, it does not
depend on the nanochannel radius or the charge density
of the charged segment. This is understandable since
the depletion zone is confined to the uncharged seg-
ment, at least in cases when the selectivity of the charged
segment is significant. The situation with low S in the
charged segment is not covered by eq 26, but for large
S, eq 26 is in a good agreement with numerical 3D PNP
analysis: the 2/3 power dependence on the bias, the 1/3
power dependence on L, and the �1/3 power on Cbulk are
very well reproduced. Equation 26 slightly overestimates
the depletion zone width compared to the numerical cal-
culations. For example, for L � 1 	m, 1 V bias, and Cbulk

� 0.1M, eq 26 yields ldep � 90 nm, while the 3D PNP nu-
merical solution gives ldep � 80 nm. The discrepancy is
surprisingly small (�15%) taking into account the set of
approximations that were made: constant Cdep through-
out the depletion zone, constant electric field inside that
zone, and zero electric field in the remaining part of the
uncharged segment.

The resulting expression for the current in a UP di-
ode under moderate reverse bias is given by

Iclosed_med
UP ) 2eπa2D

S

(2Cbulk - Cdep)

L - 2ldep
) k2

Seπa2DldepCdep
2

2Cbulk
2

(27)

where ldep is defined by eq 26 and Cdep � by eq 25.
Equation 27 transforms into eq 22 at low reverse bias,
when ldep is zero, and the concentration in the deple-
tion zone is replaced by C0 from eq 21. Despite its sim-
plicity, eq 27 catches the correct dependence of
Iclosed_med
UP on L and a (Figures 3 and 4). There is a range

of high enough biases in long diodes when the deple-
tion zone is formed, Cbulk 

 Cdep, but its length is
much smaller than L/2 and can be neglected. Then eq
27 simplifies to

Iclosed_med
UP )

4eπa2DCbulk

L

CD

∆C
(27a)
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with the current independent of the applied voltage,
similar to the closed state in BP diodes. In UP diodes,
this current is higher than in BP diodes by a factor of CD/
Cbulk. As seen from Figure 3A, this factor CD/Cbulk � 4
holds nicely for diodes with L 
 1000 nm.

UP Diode under High Reverse Bias. Equation 27 fails at large
biases when ldep reaches L/2 and one has to solve the
Poisson equation for the whole neutral segment. Simi-
lar shortcomings in the current dependence on Cbulk

can be traced. Equation 27 describes the dependence
of Iclosed_med

UP on Cbulk for moderate ionic strengths fairly
well (Figure 5A); the dependence is close to linear when
the contributions of Cdep and ldep are small. In this case,
the Cdep and ldep contributions partially cancel each
other. At small Cbulk and/or large bias, when ldep ex-
pands toward L/2, a different expression for Cdep arises:

Cdep
′ ) 8V'

Sk2L2
(28)

Note that now (when the depletion zone covers
the whole neutral region) Cdep starts increasing with
the bias. The expression of eq 27 is still applicable with
the new meaning of Cdep and ldep and results in a strong
increase of the current with bias (�V2) and/or shorten-
ing of the channel (�L�3). Because of the fast current
rise, the range of biases/lengths where the correspond-
ing dependence can be observed is very narrow and
barely recognizable for short diodes. However, at longer
lengths, for example for L � 1 	m, the V2 dependence
of the current is clearly visible. As soon as Cdep reaches
2Cbulk, the diode ceases to rectify and the current be-
comes linearly dependent on the Cbulk and the bias:

Iterminal )
V
R
)

2e2DCbulka

kBT( L
πa

+ 1
2)

V (29)

Equation 29 is analogous to eq 23 from ref 34, de-
scribing the current through a neutral channel. Transi-
tion to this terminal dependence is difficult to describe
analytically in detail for UP diode. That is why merely
merging it with eq 27 for short lengths does not fit the
overall IUP

closed dependence on L well (see Figure 3). In
the case of BP diodes, on the other hand, application of
eq 29 works better.

The dependence of ldep on Cbulk is the reason for
the existence of the rectification factor, Q, maximum at
concentrations for which L/2 � ldep (Figure 5C). One has
to note that, even though IUP

closed at very low Cbulk fol-
lows eq 29, its interpretation in that case is different.
When S is close to unity, at very low Cbulk, the whole
neutral segment also becomes primarily filled with the
majority carriers of concentration Cbulk (the minority
carriers are expelled). This disparity of concentrations
is accompanied by the applied voltage V dropping ex-
clusively on the neutral segment. Thus, the ionic current

can be estimated as due to electromigration of Cbulk in
the field 2V/L, which has the appearance of eq 29 and is
confirmed by the numerical analysis (shown in Support-
ing Information). The rectification ratio decrease with
Cbulk has recently been observed for a UP diode.4 Coni-
cally shaped nanopores with homogeneous surface
charges, which can also be considered similar to UP di-
odes, show analogous decrease in rectification.5

Figure 6C,D demonstrates an I�V curve calculated
for a UP diode. The reverse bias situation was calcu-
lated using eqs 22 and 27. The two equations describe
relatively well both the shape and the magnitude of the
current. Comparison of eqs 21 and 25 allows one to es-
timate the bias needed for the development of the
depletion zone and for the transition to a weak varia-
tion of current:

exp(V')

V′2⁄3
> ∆C ' (kL

2 )
4

3 (30)

Obviously, this condition is affected by the surface
charge and the pore radius as well as by the length
(�L4/3) and the ion concentration (�Cbulk

2/3). For the
nanochannel considered in Figure 8, it corresponds to
V � 10 kBT/e, or V � 0.25 V, which agrees well with the
PNP calculations.

Some rectification will occur even when the deple-
tion zone is not “well developed”, that is, when C0 in
eq 21 is lower than Cbulk. In order to estimate the short-
est UP diode length, let us set C=0 � 1 (the concentra-
tion of each ion is half of that in the bulk). Then for a
highly charged surface (S � 1, C
 � �C), the minimum
bias required for rectification from eq 21 is Vmin= 


ln(4�C=) or Vmin 
 4kBT/e using the same parameters
as above (a � 4 nm, Cbulk � 0.1 M, and � � �0.5e/nm2).
Since ldep is longer in UP diodes than in BP diodes, UP
diodes are more restricted toward miniaturization. The
condition for the minimal length depends on many pa-
rameters identified in eqs 26, 28, and 30. The latter pro-
vides the low limit for the bias. The upper limit can be
obtained from eq 28 by setting the maximum Cdep

equal 2Cbulk when the diode ceases to rectify, that is,
Vmax

= � Sk2L2/4. Convergence of the two limits crudely
identifies the minimal UP diode length (with neutral res-
ervoir walls):

Lmin
UP > 4

√Sk
(31)

For example, for Cbulk � 0.1 M, a � 4 nm, and � �

0.5e/nm2, the minimal length according to eq 30 is
Lmin

UP 
 4 nm. Such a short device is supposed to rectify
the current only at low enough biases, �0.1 V. This is a
very crude estimate and does not provide the full physi-
cal picture. Numerical 3D PNP calculations demonstrate
rectification for such short diodes but in a broader
range of biases (Figure 7C). Nevertheless, this analysis
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confirms that the size reduction in rectifying ionic de-
vices can be achieved easier with BP diodes rather than
with UP diodes. Not only is the rectification factor lower
for UP diodes of the same length as BP diode, but the
minimum length in UP diodes is also longer and in-
creases with decreasing Cbulk (see eq 31). The mini-
mum BP diode length Lmin

BP does not show such a de-
pendence (see eq 16).

Similar to a BP diode, a charged reservoir wall that
is in contact with the entrance into the charged seg-
ment of the diode significantly improves the perfor-
mance of very short UP diodes to outperform the esti-
mate of eq 31. Again, the ionic currents in this case are
higher for the open state and lower for the closed state
(see Figure 7D) compared to the situation of a device
with both neutral reservoir walls. UP diodes with
charged reservoir walls also do not open at reverse bi-
ases up to 5 V, but the current at reverse bias is greater
than that of similar BP diodes.

Summary of the Analysis of a Unipolar Diode. The absence of
symmetry in this device makes approximate analytical
solutions for a UP diode less convenient and requires in-
dividual considerations for different conditions. At
moderate biases, current in the open state has
pseudo-V2 dependence (eq 19), but at higher bias
and/or small diode lengths, it transforms into a linear
dependence because of polarization effects. In long di-
odes, the current has L�1 dependence, similar to that in
BP diodes. The treatment under reverse bias is analo-
gous to that of a Schottky diode, where now the deple-
tion zone width depends not only on bias (�V2/3) but
also on the channel length (�L1/3), and the bulk ion
concentration (�Cbulk

�1/3), as shown in eq 26. The deple-
tion zone in a UP diode is much longer than in a BP di-
ode of similar dimensions and extends primarily into
the neutral segment. For larger reverse biases, the I�V
curve is well described by eq 27, which produces a

weaker dependence of the closed-state current on the
radius (�a3/2) than the current in the open state
(�a5/2). Thus the rectification factor is proportional to
a. At very large reverse biases and/or at low Cbulk, the
depletion zone extends beyond the neutral segment
and changes the current to a terminal current propor-
tional to Cbulk (eq 29). Charging the reservoir wall on the
charged side of the pore significantly improves the per-
formance of very short diodes.

Contribution From Electroosmosis. Evaluation of the elec-
troosmosis contribution to the ionic current requires
solving the PNP-NS given by eq 1. The analytical solu-
tion of the PNP-NS equations for nanofluidic diodes is
complicated (if ever possible). Thus, we performed only
numerical analysis in this case. In nanochannels with
homogeneous surface charges, the contribution of elec-
troosmosis can be substantial34 because the majority
of carriers drift in the external electric field causing the
solution as a whole to move along as well. In BP diodes,
the surface charge changes sign at z0 and the overall so-
lution velocity through the device should be close to
zero. Even for quite short diodes with L � 128 nm, one
can see only a minor change in the rectification factor as
obtained from PNP-NS compared to the PNP treat-
ment (Figure 8). Solution of PNP-NS for a UP diode also
shows only a small deviation from the PNP treatment.
Here the neutral segment of the channel limits the
electroosmotic contribution.

CONCLUSIONS
The modeling of nanofluidic diodes presented here

has been inspired by recent experimental realization
of these devices.4,5,27 Studies of ion transport through
nanofluidic diodes performed thus far have been
mostly focused on the dependence of their lateral di-
mension (e.g., diameter).11 Much less attention has
been paid to the influence of the longitudinal dimen-
sion on the diodes’ functioning. The ability to shorten
the diodes while retaining their rectifying capabilities is
very important in applying them as components of
ionic circuits, artificial cells, and laboratory-on-the chip
systems. We also feel that, in order to make the rectify-
ing systems accessible to a wide scientific audience, it is
important to provide suitable analytical formulas de-
scribing the diodes’ properties. Such formulas should al-
low one to perform very convenient “back-of-the-
envelope” calculations, which will give the diameter,
length, and surface charge distribution of a device nec-
essary to obtain required diode characteristics.

In this paper, we have provided a thorough analysis
of the ionic currents through nanofluidic diodes and
how the currents depend on the channel length and ra-
dius, surface charge density distribution, the applied
voltage, as well as the ionic strength of the bulk solu-
tion. Two types of diodes, bipolar and unipolar, have
been compared, and their functioning was found to be
similar to a p–n semiconductor junction and a solid-

Figure 8. Evaluation of the electroosmosis effect on the rec-
tification factor for diodes with L � 128 nm, a � 4 nm, � �
0.5e/nm2, and Cbulk�0.1 M with neutral reservoir walls. The
rectification factor was numerically calculated for BP diodes
using 3D PNP (red square) and 3D PNP-NS (red triangle).
Similar calculations were performed for UP diodes: (black
square) 3D PNP and (black triangle) 3D PNP-NS, respectively.
The dashed lines demonstrate analytical 1D PNP
approximations.
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state Schottky diode for a bipolar diode and a unipolar
diode, respectively.

We have demonstrated that the contribution of
electroosmosis for both types of diodes (bipolar and un-
ipolar) is usually negligible and the devices can be de-
scribed using the PNP system (eq 2), rather than the
complete description involving PNP-NS (eq 1). The full
3D analysis of the PNP equations can be further re-
duced to a 1D analytical approximation for long di-
odes (aspect ratio, a/L 
 1), leading to explicit formu-
las for the currents in the open and closed states as well
as the rectification degree for both types of diodes.
The important finding of our work is a strong depen-
dence of the diodes’ performance on the channel
length. Thus, to achieve the best performance, the di-
odes must have small radii and have to be quite long so

that the diode resistance is dominant. Nevertheless,
even for diodes that are only a few nanometers long,
the rectification exists even when the reservoir walls are
neutral and is quite high when the reservoir walls have
the same charge as the corresponding sides of the
channel. Therefore, the ionic diodes with dimensions
as small as 1 nm or less (application of the continuum
analysis is questionable for dimensions less than 1 nm)
can demonstrate a high rectification performance in a
broad range of biases. Nevertheless, this behavior is
greatly affected by the edge effects at the entrances
and thus such diodes cannot be treated as indepen-
dent entities in constructing nanofluidic circuits; the
reservoirs connecting such elements have to be in-
cluded and may be the limiting factor in minimizing
the dimensions of ionic nonlinear devices.

METHODS
The numerical calculations using the PNP equations were

performed (with the help of Comsol Multiphysics 3.3a/3.4
package) for nanochannels connected to cylindrical reser-
voirs with a length of 1 	m and a 1 	m radius at each open-
ing, whose surfaces were presumed to be neutral for the ma-
jority of cases.

Very fine 0.1 nm triangular mesh was used close to the
charged walls. Elsewhere, meshing was reduced to the point
when no change in ionic current was observed upon further
mesh decrease. Ionic current was calculated by integration of
the full set of eq 1 solution (PNP-NS) over the chosen
nanochannel cross section or by integration over the reser-
voir borders facing the bulk (Lagrange multipliers integration
was used for the latter case). In the case of PNP approxima-
tion, the solution velocity was set zero, u � 0. The UMFPACK
solver was used for solving all described systems; the rela-
tive tolerance was set to 10�6.

The dielectric constant was kept constant, � � 80, and
the diffusion coefficients, Di, were presumed identical and
equal 2 � 10�9 m2/s for both ions. The mobilities of the ions
were calculated as 	l � eDi/kBT, where kB is the Boltzmann
constant.

The electrical potential on the outmost borders in the
left and right reservoirs were set to 0 and V, respectively, as
shown in Figure 1. The boundary condition, d�/dr|r�a �
�/��0, is applied at the walls. At the reservoir walls facing
bulk solution, the boundary condition C � Cbulk was applied
for both ions. For the Navier�Stokes equation, the solution
velocity at the walls was set to zero, u(a) � 0, and the den-
sity and viscosity of pure water, 
 � 1000 kg/m3 and � � 1
mPa · s, were used.
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